Scalar Rayleigh-Sommerfeld and Kirchhoff diffraction integrals: A comparison of exact evaluations for axial points*

نویسنده

  • John C. Heurtley
چکیده

The second Rayleigh-Sommerfeld (RS) diffraction integral, wherein the normal derivative is specified, is evaluated in simple closed form for all axial points when a divergent or convergent spherical wave is incident upon a circular aperture or disk. These evaluations (solutions) are compared with known corresponding solutions of the first RS diffraction integral. These sets of solutions are intercompared with their mean value, i.e., the derived solutions of the Kirchhoff diffraction integral. The three diffraction formulations are shown to be in agreement for incident divergent spherical waves when the source and observation points are equally distant from the aperture or disk. Conversely, for convergent spherical waves, the three formulations are never in exact agreement for focal and observation points located at finite distances from the aperture, though at optical frequencies the relative error at the geometric focal point is vanishingly small. The second RS formulation predicts, in the limit of plane waves incident on a disk, that the axial irradiance is everywhere equal to the incident irradiance, whereas the first RS formulation predicts that the irradiance goes to zero at the back of the disk.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the exact Kirchhoff and Rayleigh-Sommerfeld theories for the focusing of an infinite scalar spherical wave-field

The first and second Rayleigh-Sommerfeld diffraction theories, together with the Kirchhoff diffraction theory, are widely used in the formulation of optical diffraction problems [ 1 ]. They arise in the context of the half-space boundary-value problem of scalar wave theory; all sources of the optical field are assumed to be located in the Z~< 0 half-space, and the Z > 0 half-space is taken to b...

متن کامل

Optical Diffraction in Close Proximity to Plane Apertures. II. Comparison of Half-Plane Diffraction Theories

The accuracy and physical significance of the classical Rayleigh-Sommerfeld and Kirchhoff diffraction integrals are assessed in the context of Sommerfeld's rigorous theory of half-plane diffraction and Maxwell's equations. It is shown that the Rayleigh-Sommerfeld integrals are in satisfactory agreement with Sommerfeld's theory in most of the positive near zone, except at sub-wavelength distance...

متن کامل

Optical Diffraction in Close Proximity to Plane Apertures. I. Boundary-Value Solutions for Circular Apertures and Slits

In this paper the classical Rayleigh-Sommerfeld and Kirchhoff boundary-value diffraction integrals are solved in closed form for circular apertures and slits illuminated by normally incident plane waves. The mathematical expressions obtained involve no simplifying approximations and are free of singularities, except in the aperture plane itself. Their use for numerical computations was straight...

متن کامل

Rayleigh–Sommerfeld diffraction and Poisson's spot

When the Fresnel–Kirchhoff (FK) diffraction integral is evaluated exactly (instead of using the Fresnel approximation), the well-known mathematical inconsistency in the FK boundary conditions leads to unacceptable results for the intensity of Poisson’s spot. The Rayleigh–Sommerfeld (RS) integral has no inconsistencies and leads to an accurate description. The case for RS is bolstered by the obs...

متن کامل

Issues in Optical Diffraction Theory

This paper focuses on unresolved or poorly documented issues pertaining to Fresnel's scalar diffraction theory and its modifications. In Sec. 2 it is pointed out that all thermal sources used in practice are finite in size and errors can result from insufficient coherence of the optical field. A quarter-wave criterion is applied to show how such errors can be avoided by placing the source at a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1973